Index

Action
aggregated fuzzy control, 145
broader interpretation of, 128
in control, 128, 137
suggestion for, xiii
Active cells, 137
Activity completion cost, 84
Activity completion time, 80, 81, 83
shortening of, 87
Aggregation
in control (conflicting resolution), 138
in forecasting models, 61
of control outputs, 143
of experts opinions, xiv, 81, $115,116,118$
of independent outputs, 182
of trapezoidal numbers, 68, 69
of triangular numbers, 68, 69
α-cut (α-level interval), 14, 15, 89
Allocation
of investment (asset allocation), 157
of resources, 83
to activities, 84
Ambiguous, ambiguity, 34, 35
Antecedent (premise), 39
Approximate reasoning, 44
Arbitrary, 80
Aristotle, 57
Asai, K., 35, 215
Aspects (objectives) of a problem, 93, 103
Assilian, S., 155
Average (mean) or crisp average, $61,71,82$
weighted, $62,80,81$
weights of, 62
Baldwin, J. F., 58
Bandwidth, 20
Base variable, 45, 47
Beck, N., 100, 125
Bellman, R. E., 91-93, 95
Black, M., 34
Bojadziev, G., 35, 90
Bojadziev, M., 35, 90
Boole, G., 56
Boolean algebra, 56
Boyce, R. F., 189
Budget
allocation, 91, 121
crisp, 123
cummulative, 121
fuzzy, 121
planning, 119
selection, 121

Cantor, G., 32, 33
Cartesian plane, 5
Cartesian product (cross product), 5, 6, 7, 53
Chamberlin, D. D., 189
Characteristic (membership) function of a set, 7, 9
Classical control, 127
Classical (two-valued) logic, xiii, $37,42,44,50,52,56,57$
Classical PERT, 78, 79, 81, 84, 86
Client asset allocation model, xv, 158
Client financial risk tolerance model, xiv, 127, 134, 135, 140-142
Codd, E. F., 215
Coding the inputs, 136
Common-sense reasoning, xiii, 37, 44, 128
Common stocks, 206
Complex phenomena, 127
Complex systems, 127
Competition, 104
price, 104
Composition rules for fuzzy propositions, 50
conjunction, 51, 134
disjunction, 52
implication, 52, 134
Confidence, 46
level of, 14
Conflicting linguistic values, 105
Conflict resolution of experts opinions (see aggregation), 115
Consequent, 39
Contradiction (fallacy), in classical logic, 39
law of, 40,42
Control, xiii
action, 37
output, 139
of rules, 139
rules, 133
Correspondence
between classical logic and sets, $40,41,43,44$
between infinite-valued logic and fuzzy sets, 43,44
Cost, 85
crash, 84,86
normal, 84-86
Cost-driven pricing, 126
Cost slope, 86, 87
Cox, E. D., 115, 125, 170, 185, 199
Critical path, $79,83,84,85$
time for completion, 84
Critical Path Method (CPM), 78, 79
Crossover points, 20
Database, 1, 187
fuzzy, xv
standard, 187
relational, xv, 187, 188
Decision, 14, 95
aggregated, 118
analysis, 37
maximizing, 93-96, 106, 108, 110, 112-114, 118
multiple, 92
table(s), 133
induced, 137
Decision making, xiv, xv, 61, 91, 92, 119
by averaging, 110, 119
by intersection, xiv, 92, 104, $110,112,114,119$
fuzzy averaging for, xiv, 61, 91, 110
Defuzzification, 69, 93, 144, 145
center of area (or gravity) method, 145, 147
height defuzzification method, 146, 148
mean of maximum method, 146
of fuzzy average, $69,70,81$, 82, 116
maximizing value (formula), $69,75,77,81,84,123$
Degree (grade) of membership, $9,26,35,58$
Delphi method in forecasting, xiv, 71
Demand, 87
annual, for a new product, 88
dependent, 88
independent, 88
on the market, 170
Direct max product, 32, 52, 54
Direct min product, 31, 52
Distance between triangular numbers, 74,90
Dividend distribution, 95, 111, 112
Drucker, P., 109, 126
Dubois, D., 35
DuPont, 79
Earl, E., 89
Employee performance, 104
Entailment principle, entails, 56, 123
Estimation, 84
Evaluation, 96
from point of view of goals and constraints, 97
of learning performance, 102
Excluded middle, law of, 17-19, 33
in logic, 40, 42
in sets, 17
Experts, 80
experience of, 80
groups of, 85
opinions, $61,76,115$
close, 115, 117
conflicting, 115, 117, 118
ranking of, 116, 117, 118
weights assign to, 76
False, falsity
in classical logic, 37
in fuzzy logic, 58, 59
in three-valued logic, 41
Filev, D. P., 155
Firing of rules, 138
Fogarty, D. W., 79, 84, 170
Folger, T. A., 35, 215
Forecasting, xiii, xiv, 61, 71, 89
activity completion time, 84
by Fuzzy Delphi method, 72
fuzzy averaging for, 61,72
in business, 89
in finance, 89
in management, 89
project completion time, 83
Freiberger, P., 36
Function, 6, 7
Fuzzy, fuzziness, 21, 33-35, 80, 119, 127
Fuzzy averaging (average), xiv, $61,66,71,91,95,110$, 111, 115, 119
Fuzzy complex queries, 196, 197, 203
based on averaging, 198, 204
based on logical connectives, 196, 204
conclusion of, 197
truth value of, 198
for small manufacturing companies, 199
for stocks and funds, 206, 207
from 20 biggest mutual funds in Canada, 208, 212
Fuzzy Delphi method, 61, 71, $72,75,76,81,84,88$, 119,
weighted, 76
Fuzzy environment, 91, 165
Fuzzy graph, 28
Fuzzy logic, xiii-xv, 1, 35-37, $43,50,60,61,91,115$, $128,178,187$
Fuzzy logic control, xi, 127, 128, 151, 157, 183
for business, finance, and management, 127
for pest management, 164
for potential problem analysis, 189
for problem analysis, 179
Fuzzy logic models, 127, 128
Fuzzy number(s), xiv, 1, 19, 34, $35,44,71,128$
arithmetic operations with, 62, 89
bell-shaped, 20, 125, 170
describing large, 24-26
describing small, 24-26
piecewise-quadratic, 20
trapezoidal, 24, 25, 45
arithmetic operations with, 62, 66, 89
central, 24, 25, 62, 102
clipped, 140, 145
left, 24
right, 24
symmetrical, 24
triangular, 22-24, 45, 62, $71,72,81,85,119$
arithmetic operations with, 62, 66, 89
central, 22, 23, 69, 83
clipped, 140, 145
left, 25
right, 25
symmetrical, 23
Fuzzy outputs, 133
Fuzzy PERT, 77, 81, 84
for project management, 77
for shortening project length, 84
for time forecasting, 81
Fuzzy reading inputs, 136, 137
Fuzzy relation(s), xiv, 1, 26, 27, 36, 52
complement of, 30
direct max product, 32
direct min product, 31
equality of, 30
inclusion of, 30
intersection of, 30
union of, 30
Fuzzy set(s), xiii-xv, 1, 8-10, 18, 27, 33-36, 43, 44, 58, 69, 91, 92, 115, 128, 187
complement, complementation, of, $16,17,99$
convex, 15, 19
discrete, 96
empty, 10
equality of, 15
inclusion of, 16, 54, 123
intersection of, 16, 18, 91, 93
nonconvex, 15
nonnormalized, 15
normalized, 15
proper subset of, 16
union of, 16,18
Fuzzy singleton, 10, 149, 150
Fuzzy statistics, 69
Fuzzy zero-based budgeting method, 119, 123

Goals, 91, 93, 110
Greece, paradox from, 33
Greek oracles of Delphi, 71
Greek philosophy, 57
Graham, I. G., 185, 215
Grant, R. M., 126
Gupta, M. M., 35, 71, 74, 90, 119

Hellendoorn, H., 155
Herbert, B., 126
Heuristic, xiii, 128
Hoffmann, T. R., 79, 84, 170
Housing policy, 99
If ... then rules, xiii, xiv, 127 , $128,133,155$
Imprecise, imprecision, xiii, 34, 35
environment of, 128
Income, 46
Individual investment planning policy, 115-117
aggresive, 115, 117, 118
conservative, 115, 117
Induced decision table, 137
Inferential rules, 44, 127
Infinite-valued logic, 43, 44
Inflation, 46
Information, xi
ambiguous, 119
imprecise, 19, 61, 71, 119
incomplete, 19, 91
Input(s) (in control), 129
Interest rates, 115
falling, 115, 125
rising, 115, 125
Internal reallocation, 82
Interval, 2
number, 2
Inventory action, 174
Inventory control models, xv, 170, 173
adjustment factor, 177
classical, 170
fuzzy, 170
if ... and ... then rules for, 171-173
inputs: demand and quantity-on-hand, 170, 171, 173
output: inventory action, $170,171,173$
Investment advisory models, 157
Japanese, 126
Job hiring policy, 96-98
Job selection strategy, 100
Jones, P. L., 185, 215
Kandel, A., 35
Kaufmann, A., 35, 71, 74, 90, 119
Kepner, C. H., 177, 178, 182, 183, 185
Klir, G., 35, 215
Knowledge base, 128

Knowledge of human experts, 80, 128
Knowledge workers, xiii
Kosko, B., 36
Kunii, T. L., 215

Li, H. X., 125
Linguistic modifiers, xiv, 44, 46, 47, 49
fairly, 46, 49, 105
not, 46
very, $46,49,105$
Linguistic relations, in set theory, 27
Linguisitc variable(s), xv, 37, 44, 46, 190
age (human), 44, 45, 192
age (company), 200
annual income, 128, 131
annual revenues, 200
change (of fund asset), 209, 210
demand (for a product), 170 dividend, 96
earning per share, 202
employee count, 201
false, 58
growth potential, 179
parasite population, 164, 165
pest population, 164, 165
priority of deviation, 179, 180
product count, 201
profit (or loss), 201
return, 210
risk tolerance, 131
salary, 192
serious, 178, 180
terms (labels, values) of, 44, 45
total networth, 131
truth, true, 58, 59
modifications of, 58, 59
Loan scoring model, 46-48, 53
Logical connectives, 38, 41, 196
conjunction (and), 38, 40, 41, 196
disjunction (or), 38, 40, 41, 196
implication, 39-41
negation (not), 38, 40, 41
Łukasiewicz, J., 41, 43, 52, 57
Makridakis, S., 89
Mamdani, E. H., 155
Management Intelligenter Technogien $\mathrm{GmbH}, 216$
Mandelman, A., 207, 208
Many-valued logic, 37, 41, 50, 52, 57
Material handling system design, 79
Mathematical models, 127, 128
McNeill, D., 36
Membership degree (see degree of membership)
Membership function
of fuzzy relations, 26
of fuzzy sets, $9,17,51$
Mintzberg, H., 89
Mizumoto, M., 52
Modifiers (see linguistic modi-
fiers), 37
Money supply, 38
Multi-experts decision making, xiv, 115
Multi-experts forecasting, 72
Mutual funds, 206
Nahmias, S., 35
Network planning model, 79
for material handling system, 79
improved by using fuzzy PERT, 83
Novák, V., 35, 95
n-valued logic, 43
One-input-one-output control model, 152, 179
Ordered pair, 4, 5, 26
Ordered triple, 26
Orlicky, J., 88
Output(s) (in control), 129
Overpricing, 104
Peirce, C. S., 57
PERT (see Classical PERT)
Pest management, xv
fuzzy logic control for, 164
Poper, K., 34
Possibility theory, 58
Post, E. L., 57
Potential problem analysis, xv, 182
fuzzy logic control for, 184
Prade, H., 35
Precondition, 133
Predicate, 40

Predator (parasite)-prey (pest) system, 165
control of, 165
Price
competition, 104, 105, 108, 109, 113, 126
initial, 104
of a product, 38
suggested, 107
Price-led (driven) costing, 109, 126
model, 109
Pricing models, xiv, 91, 104, 105, 110, 112
for new products, 104
requirements for, 104, 105
modified, 105, 107, 108
Pricing policy, 105
Probability, probabilistic, 35, 80
PERT, 80, 84
Problem analysis, xv, 177, 182
fuzzy logic control for, 179
Product of competition, 110
Production rules (see control rules), 133
Profit, 24, 46, 109, 126
Project completion time, 79, 80, 83
estimation (forecasting), 80 , 81
Project management, 77
of a material handling system, 78, 79, 81
Project reduction time, 87
Proposition(s) (statement), 37, 40, 41
compound, 38, 39
truth value of, 39
imprecise, 44
simple, 38
truth value of, 39
expressing future events, 57
Propositional fuzzy logic, 44
Propositions of fuzzy logic, 50
canonical form of, 50
composition rules of, 50
conjunction, 51
disjunction, 52
implication, 52
conditional, 50
modified, 50
true to a degree, 50
truth value of, 51,57
Quasi-contradiction, 42
Quasi-tautology, 42
Queries, 187
crisp (standard), 187, 189, 190, 195, 199
fuzzy, xv, 187, 194, 195, 199
Rand Corporation, 71
Readings (measurements), 61, 135
Relation(s), in set theory, 6, 7, 36
Remington Rand, 79
Risk, 24
Rule evaluation, in fuzzy logic control, 136
Rule of inference, in fuzzy logic control, 133
compositional, 155
conjunction based, 155
Rules strength table, 138
Russell, B., 33, 57

Schwartz, T. J., 208
Selection for building construction, 98
Semantic entailment, 54-56
SEQUEL, 189, 190
Set(s), classical, xiv, 1, 2, 9, 10, 32, 44
complement of, 3, 40
convex, 4
disjoint, 3
empty, 3
equal, 3
finite, 2
infinite, 2
intersection of, 3, 4, 40
listing method, to define, 2
members of, 1
membership rule, to define, 2
subset of, 3,40
union of, $3,4,40$
universal, 2, 7,45
Simon, H. A., 177
Singleton, 2, 58
Standard \& Poor's 500 index, 216
Standard relational databases, 187, 188
retrieval of data from, 189, 190, 207
Statistics
classical, 61, 69, 71, 80
fuzzy, 69
Stock market, 38, 126, 206, 207 crash, 206
Storage cost, 170
Strength of a rule, 138, 139
Stress, 46
Subjective, subjectivity, 71, 80, 91
judgement of experts, xi
Sugeno, M., 35, 215
Supporting interval, 19, 22, 23
Systems, 128
business, 128
financial, 128
managerial, 128

Tahani, V., 190
Tautology, in classical logic, 39, 40
Terano, T., 35, 215
Terms of linguistic variables (see linguistic variables), 44, 45
Thomas, C., 155
Three-valued logic, 41
Tidd, C., xv, 209
Trapezoidal numbers (see Fuzzy numbers)
Tregoe, B. B., 177, 178, 182, 183, 185
Treshold, 14, 15, 194, 197
Triangular numbers (see Fuzzy numbers)
Trotsky, L., 89
Truth, true, 46
degree (grade) of, 35
in classical logic, 37
in fuzzy logic, 50
in three-valued logic, 41
Truth tables, 39, 57
Truth value set
in classical logic, 37
in infinite-valued logic, 43
in many-valued logic, 43
in three-valued logic, 41, 42
Tuning of FLC models, 150, 151
Two-valued logic (see classical logic)

Uncertain, uncertainty, xiii, 23, 35, 80
environment of, 128
U.S.A. Navy, 79

Vague, vagueness, xiii, $8,14,19$, 21, 33-35, 43, 44, 57
Venn diagrams, 4,17
Wall Street, 126
Whitehead, A. N., 57
Wittgenstein, L., 57
Words with opposite meaning, 99

Yager, R. R., 155
Yamaichi securities, 208
Yen, V. C., 125
Zadeh, L. A., xv, 9, 34-36, 43, 58, 59, 91-93, 95, 155
Zero-based budgeting method, 119
Zimmermann, H. J., 35, 95

